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Abstract — The work introduces a linguistic based model 

designed for distorted or ambiguous patterns where a graph 

based approach is used for structure representation. The 

knowledge about unevenness is usually created on the basis of 

finite number of patterns treated as positive samples of 

unknown language. The IE graphs are used as the base. Single 

pattern can be represented using deterministic IE graph. 

Subsequently, the collection of patterns, represented by 

deterministic graph is transformed into equivalent random 

graph language. Utilization of the grammatical inference 

mechanisms gives the possibility to perform this process in 

automatic way. Using the IE graphs and imposing some simple 

limitations on graph structures allows to obtain a polynomial 

complexity of knowledge inference. In the work it is described 

how to use the proposed model for collecting the knowledge in 

handwritten signatures recognition and analysis systems. 

Information about graphemes (solid fragment of handwritten 

signature) variability is stored in the form of random IE 

graphs and stochastic ETPL(k) graph grammars. Instead of an 

ordinary the IE graph, an attributed one is used in order to 

increase a descriptive power of the proposed schema. The 

parametrical data embedded in the graph carries some 

additional semantic information associated with the structure 

of pattern. The work presents discussion about inference 

scheme and computational complexity of the proposed 

linguistic representation scheme. Described methodology can 

be especially suited for creating the knowledge representation 

of the handwritten signatures, signs and ideograms (e.g. kanji) 
in offline recognition systems. (Abstract) 

Keywords – graph grammar, ETPL(k), attributed random IE 

graph, knowledge-based systems, IE graph, ambiguous patterns, 

attribute-controlled graph grammar, grammatical inference, 

heterogenous parsing, random languages. 

I.  INTRODUCTION  

In pattern recognition there is often necessity to analyze 

structures with some sort of variability. It may result either 

from the natural features of the recognized pattern as it is 

the case with handwritten signatures (it is impossible to 

obtain two identical representations of the signature) or 

from the technical reasons that cause some disorders in the 
analyzed scenes. Application of neural networks or some 

statistical methods based on HMM, DTW or SVN 

approaches usually brings satisfactory results. Those 

methods, though promising in some situations also have a 
significant disadvantage – the knowledge gathered during 

the recognition process and subsequently used for analysis  

as well as classification unknown objects remains 

unrevealed. This implies considerable problems when the 

system is supposed to analyze characteristic features of the 

teaching sample which was the base for recognition process. 

We can avoid such inconvenience if the syntactic methods 

are used as the model for knowledge representation. For 

those methods the knowledge takes a form of formal 

language describing the teaching sample or set of input 

objects and is stored as collection of rules corresponding 

formal grammar. This may be significantly facilitated if the 
variability of objects would be analyzed with regard to their 

spatial structure and some other features. As far as the 

quality of the analysis is concerned, it is important to ensure 

the appropriate descriptive power of the applied syntactic 

methodology and effective of the parsing mechanism.  
The aim of this work is to present the author’s original 

concept based on the use of IE graphs [2], random IE graphs  
[12] and probabilistic grammars [4] belonging to the 
ETPL(k) class with the purpose of gathering and analyzing 
the knowledge about the structure and features of ambiguous 
objects (variant or distorted). An example of recognizing the 
components of a handwritten signature (graphemes) should 
serve as a means to show the work of such model, however it 
may equally well be used for the representation and analysis 
of some other patters with variable structure. In the next 
chapter (chapter II) the way of describing the objects (scenes, 
patterns) if the attributed IE graphs are applied (section II) is 
presented. The following parts (section III) refer to the 
construction of knowledge (language) by the use of IE 
graphs and probabilistic grammars of ETPL(k) class as well 
as to the model of pattern analysis i.e. parsing process 
(section IV). 

II. REPRESENTATION OF THE AMBIGUOUS/DISTORTED 

PATTERNS 

In general every scene (pattern) should be described in 
the meaning of its structural representation, namely the 

graph structure. The scope of initial processing and type of 

parametric information which should be collected in order 

to ensure the precise and firm identification of the 



recognized objects depends on how specific are the 

analyzed patterns. For the purpose of this work the model of 

representation of handwritten signatures described in [9,10] 

will be applied. More technical details about the discussed 

model can also be found there. According to that model a 

single object (grapheme) is presented as the attributed IE 
graph [8,10], in which semantic information could be 

associated both with the nodes and the edges. In case of 

handwritten signs representation additional information 

referring to the shape parameters are associated only with 

the graph nodes. Graph nodes represent the primary 
components (curves), while edges - the relation of direct 

contiguity (the touching of curves).  
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Figure 1. Representation of a single pattern: a) original, grayscale image 

of the signature, b) a skeleton of the signature with indicated points that 

separate the primary components and graphemes (dashed line), c) ordered 

set of the edge labels, d) representation of the first grapheme in a form of 

attributed IE graph with indicated sets of parameters. 

In Fig. 1 a sample representation of a grapheme in a form 

of an attributed IE graph is presented. Set of the directional 

labels determining spatial relations among the components 

of the object described with a resolution implied by the 

specifics of the object. Similarly the sets of attributes 

associated with the graph nodes may consist of any 

composition of the parameters properly reflecting the 

features of primary components. In the described model in 

[9,10] the appropriate set of attributes constitutes a 
collection of Zernike moments while the directional labels 

are defined with resolution of 15 angle degrees. In practical 

use of pattern recognition methods the necessary knowledge 

is derived from a finite set of examples, that create so called 

teaching sample.  

For the purpose of this work it has been assumed that the 

input teaching sample consists of the handwritten signatures 

set. For every signature we can create a structural 

representation which has a form of deterministic attributed 
IE graph (compare theoretical considerations in [10]). In 

Fig. 2 are presented separate graphs corresponding to the 

leading graphemes of each signature.  

In the knowledge construction process apart from the 

singular objects representation also the definition of 

mechanism that allows to store aggregated information 

concerning acceptable level of scenes variation (acceptable 

variants) is required. In order to fulfill such requirements 

the formalisms based on random attributed IE graphs has 

been proposed (def. 1), as it is necessary to associate the 

parametric semantic information creating the shape vector 
with every node as it was in case of graphs representing 

individual objects (graphemes). 
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Figure 2. Attributed IE graphs presenting the leading graphemes of every 

signature belonging to training set (sets of attributes associated to the 

nodes have been omitted for better clarity of the picture). 

Definition 1. The random attributed IE graph is known as a 

seven ),,,,,,( EVEVG  , where: 

a) ),,,,(*  EVG  is a random IE graph 

concordant with the definition in [12], 

b) 
EV  ,  are representations attributing graph 

nodes (1) and edges (2), respectively: 

 

}{: iV AAV  





iA  ji AAji  (1) 

}{: iE BBE  





iB  ji BBji  (2) 

and fulfilling conditions (3) and (4): 

)()( vV vVv    (3) 

  )(),,( eEwue E
  (4) 

From figure 2 it can be quite easily noted that the graph 

representation of individual graphemes described in a form 

of attributed IE graphs shows some structural similarity. 

Between the groups of graphs indicated as {3a, 3e} and {3b, 

3c, 3d, 3f} there is a structural isomorphism, that can be 



represented by the random IE graphs. This isomorphism 

should be understood here as a bijection [12] preventing the 

change of the graph structure but allows some variance on 

the level of node and directional labels.  

Transformation from the deterministic description 
(representation of individual graphemes) to the random one 

(aggregated information about all accepted variants of the 

object) can be performed by the creation of the appropriate 

subsets representing those elements of structurally 

isomorphic graphs and then constructing the random graphs 

on their basis. Fig. 3 shows random graphs corresponding to 

isomorphic categories of graphs presented in Fig. 2. 
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Figure 3. Attributed random of the IE graphs representing variability of 

graphemes (structural isomorphism) for graphs presented in Fig. 2: a) 

random graph that aggregates the features of graphs presented in Fig. 2a 

and 2e, b) random graph which aggregates the features of graphs presented 

in Fig. 2b, 2c, 2d and 2f. 

Therefore the random graphs resulting from that process, 
describe full range of variability of teaching sample both in 

its structural and parametric layer. Subsequently an 

appropriate random language which can be a base for a 

recognition system may be constructed. With regard to the 

practical applicability of such language creation its 

automation must be ensured. 
 

III. RANDOM LANGUAGE – GRAMMATICAL INFERENCE 

 

In order to apply syntactic methods in pattern recognition 

processes the appropriate base of knowledge, consisting of 
the descriptions sample images (graphemes) must take a 

form of certain language L(G), generated by the adequately 

defined formal grammar. The example used for the purpose 

of this work was based on a stochastic (probabilistic) graph 

grammar G which belongs to the class ETPL(k) [4]. 

Grammars of that type generate random IE graphs, which 

are suitable for describing the structure of ambiguous 

scenes, where the disorders and unexpected changes of 

shapes are highly likely to appear. 

 
The process of automatic inference for grammars, and for 

graph grammars in particular is always very sophisticated 

and expensive. In order to reduce such requirements certain 

limitations concerning the structure of words belonging to 

the language inferred and in consequence on the way how 

the graphs describe single images must be imposed. Namely 

it is assumed that there are no edges joining the nodes on a 

particular level.  It must be stressed however that such limits 

imposed on the way the graph is stretched out on the 

elements of scene do not significantly decline the possibility 

of representing effectively the recognized scene in the 
classical pattern recognition tasks, which means the 

descriptive power of such scenes is not decreased. On the 

other hand, introduction of those limits has allowed to 

suggest a fast grammatical inference method aimed to 

distinguish category of graphs, which is less demanding for 

calculation power than the other general inference 

algorithms for IE graphs already described [1]. A brief 

concept of such algorithm can be described as follows: 

Let us assume that the algorithm has a task to indicate 

complete set of production rules for a grammar G, which is 

capable to generate the random graph R, given as the input 
for that algorithm. In addition, every node will be generated 

directly i.e. by the use of a non-terminal label. While 

processing an input graph R will be reduced by eliminating 

every normalized, two-level complete NCTL graph (def. 2) 

and corresponding production rules will be generated 

instead. The direction of reduction process reflects the 

decreased order of the terminal graph nodes indexes. 

Definition 2. If R is a random IE graph and CTL(i) is a 

complete two-level CTL graph, originated in a terminal 

node of the graph R indexed i as defined in [2]. A CTL(i) 

graph from which all the nodes that have a level equal to a 

terminal node i have been removed is called a normalized 
graph. Such graph is described by the symbol NCTL(i).  

The explanation how the grammatical inference mechanism 

is conducted will be presented using the random IE graph R 

(Fig. 4) as a sample. It is necessary to note that every node 

in graph R has individually calculated node level [2]. 

Precise information about node levels is useful during 

concluding process when the right sides of productions will 

be created. The modifications like removing consistent 

subgraph from analyzed graph R make no effect on node 

levels if are performed in the order of decreasing indexes 

beginning from the maximum one. Therefore the disposable 
calculation of the node levels is enough. 



Each concluding stage requires obtaining the following set 

of data needful to complete production: 

 NCTL(i) – normalized complete CTL graph 

originated in node indexed with i and denoted by 

terminal label, 

 CD(i) – characteristic description of terminal node 
indexed with i, 

 PC(i) – preceding context for terminal node 

indexed with i [Fla93], 

 PCC(i,j) (ang. Preceding Context for Consequent) 

– preceding context for consequent node belonged 

to NCTL(i) graph and indexed with j – only edges 

outer against NCTL(i) graph are included, 

 RE(i) (ang. Rejected Edges) – set of nodes 

belonged to CTL(i) graph and rejected because 

level conflict with originated node is found. 
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Fig. 4. Input random IE graph for grammatical inference algorithm. 

 

All productions are constructed sequentially and denoted 

by temporary non-terminal labels iA  where 
Ni . In 

graph R (Fig. 4) the procedure starting from the node 

indexed with 7 since it is the greatest index in graph R 

where terminal label exists. In this case the CTL(7) graph 
has a form as in Fig. 5 and it is identical with NCTL(7) (one 

terminal node without consequents). 
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Fig 5. Random IE graph denoted as NCTL(7) . 

 

 

 

 

The rest of datasets state as following: 
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Basing on data presented above we can create a 

production of stochastic ETPL(k) graph grammar in the 

form ),,( CDlp   where the terminal node 
1Al  . The right 

side of the production denoted by D makes a form of 

NCTL(7) graph.  Embedding transformations from dataset 

denoted by C are composed on the basis of PC set (input 

edges associated with currently removing node), PCC set 

(input edges associated with all the rest nodes of D graph) 

and characteristic description of originated node (output 

edges). To formulate the general rules determining how to 

construct embedding transformations it is necessary to put 

some denotations. Let us assume that index i is associated 
with originated node for NCTL(i), n(i) gives the random 

label for node indexed with i, )},{()( kk XAiPC  where 
kA  i 

kB are random labels for graph nodes and 

)},{(),( kk YBjiPCC   where 
kX  i 

kY are random labels for 

graph edges. In such case the embedding transformations 

connected with input edges are constructed as following: 

 for input edges basing on PC set: 

})}{,,),({(}){,( inXAininXC kkk   

 for input edges basing on PCC set: 

})}{,,),({(}){,( inYBjninYC kkk   

Moreover, assuming that }{)( lwiRE  is the set of 

indices representing the nodes removed from NCTL(i) graph 

due to constraints connected with node levels (nodes from 

the set )}({/)}({ iNCTLViCTLV ) and characteristic 

description CD(i) includes a random edge in the form 

),,( ll wi  then the embedding transformations connected 

with output edges are constructed according to the general 

rule presented below:  

 for output edges leading into nodes belonging to 

RE set: })}{),(,),({(}){),(( outwninoutinC ll  

According to introduced scheme the embedding 

transformations for terminal node indexed with 7 can be 
determined basing only on PC set because PCC and RE sets 

are both empty. In this case PC(7)includes two elements, 

thus two embedding transformations will be created. These 

transformations are associated with the input edges leading 

to node indexed with 7. The appropriate production with 

embedding transformations is presented in Fig. 6.  
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Fig 6. Production of stochastic grammar graph defined for subgraph of R 

originated from node indexed with 7. 

 

The last step, the subgraph NCTL(7) of graph R is 

replacing by non-terminal label A1. Subsequently the next 

terminal node with greatest index is determined and 

concluding process continues. The operations are repeated 

until terminal node indexed with 1 will be encountered. 

Then such NCTL(1) graph is recognized as grammar axiom 

and inference algorithm stops. 

 

Finally the inference scheme can be presented as in Fig. 

7: 

 

Fig 7. Algorithm of application rules of the unknown grammar sETPL(k) 

for input sentence in the form of random IE graph. 

Formally computational complexity of the proposed 

inference algorithm as a function of the size (number of 

nodes) random input graph can be estimated as O(n2). 

Presented inference algorithm could also be directly applied 
for the attributed random IE graphs. No extra modifications 

of the algorithm are required provided that the information 

concerning the sets of attributes, linked to the terminal 

nodes of input graph is transferred into the corresponding 

NCTL graphs that represent right side of the production 

rules of an expected stochastic grammar. As the inference 

process is always carried indirectly i.e. by the use of non-

terminal node such collocation in case of a particular NCTL 

sub-graph must be fixed only for the attachment graph, as 

only this graph represents a terminal node in the entire 

graph. In such a case appropriate procedures – called 
semantic actions – must be included directly in 

ConstructNCTL procedure. The number of parameters sets 

assigned to the particular terminal node is represented by 

constant, independent from the size of input graph; therefore 

it does not influence the computational complexity of the 

entire inference algorithm. 

IV. PARSING  OF THE DETERMINISTIC STRUCTURES FOR 

THE GRAPH LANGUAGES 

Though the base of knowledge describing the distorted or 

variant objects could easily be presented in the form of 

language that generates random IE graphs (attributed) the 

single object (scene) being recognized must be described by 

the deterministic IE graphs i.e. graphs describing the images 

without any distortions. In such a case the necessity of 

syntactic analysis heterogeneous structures arises as the 

adherence of  the inspected deterministic IE graph 

(describing the object) to the language generated by the 

probabilistic grammar of sETPL(k) class (i.e. the language 
consisting of the random IE graphs) must be examined. In 

the subject literature we can find the description of the 

syntactic analyzers of homogenous structures which can be 

applied both for deterministic graph grammars of ETPL(k) 

class [2] as well sd for stochastic (probabilistic) grammars 

of ETPL(k) class [4]. However none of them are adequate 

for the model considered here. Searching for an appropriate 

concept of parsing graph grammars of ETPL(k) class, that 

would include also heterogenic structures, as it is 

consideration here, the works of [1,4] have to be referred. 

The author of those works presents the solution to the 
problem of syntactic analysis where the adherence of IE 

graph derived from a random rIE graph to the language 

generated by the deterministic graph grammar of ETPL(k) 

class has been investigated. It means the following 

reasoning scheme: deterministic graph grammar of 

ETPL(k) class → random IE graph. For the purpose of 

recognition model described in this work another 

mechanism is needed, namely: stochastic graph grammar of 

ETPL(k) class → deterministic IE graph. That is why 

necessary was to define a new parsing algorithm devoting to 

the described task. Proposed model of an syntactic analyzer 

was based on the classical reasoning scheme usually applied 
for ETPL(k) class grammars [2]. In this scheme generational 

type of a single-run parsing scheme without return (top-

down strategy) is applied. Because of the semantic 

information (parameters) built into the graphs the attribute 

controlled reasoning must be applied (def. 3). 

 

Definition 3. A stochastic attribute controlled graph 
grammar of class ETPL(k) above sets of attributes A, B is 

known as a six G = (Σ, Δ, Γ, Ρ, Ζ, fZ), where: 

a) Σ, Δ, Γ, Ζ are determined as for the grammar 

sETPL(k) defined in accordance with [4], 

S:=R; 

P=ø; 

SetNodeLevels(S); 

repeat 

 PCC=ø; NCTL=ø; G=ø; 

 i:=GetMaxTermIndex(S); 

 if i=1 then 

  Z:=S; {grammar axiom} 

 else 

  begin 

  RunInferenceRandomIE(S,I,G); 

  ConstructNCTL(S,I,G,NCTL,PCC,RE); 

  CD:=GiveCD(S,i); 

  PC:=MakePC(S,i); 

  ComposeProduction(P,NN,NCTL,CD,PC,PCC,RE,CS); 

  RemoveNCTL(S,I,NCTL,NN,CS); 

  end 

until i=1; 



b) },{)(: , FALSETRUEDf BAZ   is a starting 

predicate, where the graph Z  is created from the 

start symbol Z by removing non-terminal nodes, 

c) P is a production set of the form p=(l, D, C, f), 

where: 

– (l, D, C) is a probabilistic production in 

accordance with the definition of the 

sTLP grammar (definition in [6]), 

},{)(: , FALSETRUEDf BA   is the predicate of 

applicability of production p, where the graph D  is created 
from graph G by the removal of non-terminal nodes. 

In the described model the recognition process of an 

unknown image, represented by the deterministic IE graph 

H means finding the answer to the question whether it is 

possible to derive a random IE graph R which belongs to the 

language L(G) generated by the stochastic graph grammar 

of class ETPL(k), for which exists a deterministic output IE 

graph that is isomorphic with the investigated graph H. The 

applicability predicates added to attribute-controlled 
grammar allow us to determine, this on the basis of the 

semantic context (attribute values), whether a specific 

production may be applied at the given stage of 

argumentation. 

Formally the parsing algorithm can be presented as in the 

Fig. 8. 

 

Fig 8. Parsing algorithm of deterministic attributed IE graphs for 

probabilistic grammars class ac-sETPL(k) 

Single step of reasoning process in ac-sETPL(k) 
grammar has a pessimistic complexity of O(n). Parsing 
requires exactly n steps so the final estimation of time 
complexity of the full parser algorithm for attribute 
controlled grammar sETPL(k) is O(n2) and it is similar to 
classical algorithms available for class deterministic 
ETPL(k) languages. 

V. CONCLUSION 

The mechanism of description and inference of variable 
structures presented in this work has been applied in practice 
as an element of system for graph biometric verification 
based on the handwritten signatures [9,10]. It seems 
plausible that the proposed model of description the distorted 
scenes based on the use random languages of ETPL(k) class 
could equally be applied in other domains. Particularly 
promising could be its application in cognitive analysis [5-7] 
and knowledge collecting systems e.g. image understanding 
[11] or learning systems [14]. 
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R:=Z; 

PCEL=ø; error:=0; 

TestAxiomAP(H,R,error); 

for i:=1 to n do 

 if error=0 then 

  begin 

   if фR(i)is a nonterminal node then 

   begin 

    m:=GetMaxInd(R)+1; 

    Construct_k-TL(H,i,m,W); 

    T:=GenerateTTLN(фR(i)); 

    O:=GenerateOTLN(W,T); 

    ChooseProduction(W,O,p); 

    if p=0 then error:=1 else ApplyProduction(R,i,p); 

   end; 

  if not CheckCI(H,R,i) then CheckPCI(H,R,i,error); 

  TestPCI(PCEL,R,error); 

 end. 


